Best Practices of Feature Selection in Multi-Omics Data

Author:

Ipekten Funda1ORCID,Ertürk Zararsız Gözde1,Doğan Halef Okan2,Eldem Vahap3,Zararsız Gökmen1

Affiliation:

1. Erciyes University, Turkey

2. Cumhuriyet University, Turkey

3. Istanbul University, Turkey

Abstract

With the recent advances in molecular biology techniques such as next-generation sequencing, mass-spectrometry, etc., a large omic data is produced. Using such data, the expression levels of thousands of molecular features (genes, proteins, metabolites, etc.) can be quantified and associated with diseases. The fact that multiple omics data contains different types of data and the number of analyzed variables increases the complexity of the models created with machine learning methods. In addition, due to many variables, the investigation of molecular variables associated with diseases is very costly. Therefore, selecting the informative and disease-related molecular features is applicable before model training and evaluation. This feature selection step is essential for obtaining accurate and generalizable models in minimum time with minimum cost. Some current methods used for feature selection are as follows: recursive feature elimination, information gain, minimum redundancy maximum relevance (mRMR), boruta, altmann, and lasso.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3