Affiliation:
1. KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
2. G. L. Bajaj Institute of Management and Research, India
3. Ministry of Skill Development and Entrepreneurship, Guwahati, India
Abstract
Presently, machine learning (ML) techniques have gained considerable attention, with growing interest in various areas and applications. Healthcare, agriculture, and bioinformatics are the most identified areas to study with the help of ML. This chapter introduces about the basic principle of ML such as data, model, basic mathematical details of ML, and types of learning. The important aspect of ML is “how to teach a machine.” This chapter focuses on the types of learning: supervised, unsupervised, semi-supervised, and reinforcement learning. Some commonly used ML algorithms such as decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM), naïve Bayes, k-mean, q-learning, etc. are briefly discussed for understanding. Finally, the author offers the application of ML with blockchain that is reforming the traditional healthcare and agricultural sector to a more reliable means.