A Semi-Supervised Approach to GRN Inference Using Learning and Optimization

Author:

Daoudi Meroua1,Meshoul Souham2,Boucherkha Samia3

Affiliation:

1. MISC Laboratory, Computer Science Department, Abdelhamid Mehri Constantine 2 University, Algeria

2. IT Department, Nourah Bint Abdulrahman University, Saudi Arabia

3. Computer Science Department, Abdelhamid Mehri Constantine 2 University, Algeria

Abstract

Gene regulatory network (GRN) inference is a challenging problem that lends itself to a learning task. Both positive and negative examples are needed to perform supervised and semi-supervised learning. However, GRN datasets include only positive examples and/or unlabeled ones. Recently a growing interest is being devoted to the generation of negative examples from unlabeled data. Within this context, the authors propose to generate potential negative examples from the set of unlabeled ones and keep those that lead to the best classification accuracy when used with positive examples. A new proposed genetic algorithm for fixed-size subset selection has been combined with a support vector machine model for this purpose. The authors assessed the performance of the proposed approach using simulated and experimental datasets. Using simulated datasets, the proposed approach outperforms the other methods in most cases and improves the performance metrics when using balanced data. Experimental datasets show that the proposed approach allows finding the optimal solution for each transcription factor in this study.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3