New Hybrid Gene Selection-Sample Classification Method in Microarray Data

Author:

Das Chandra1,Bose Shilpi1,Dutta Sourav1,Ghosh Kuntal2,Chattopadhyay Samiran3

Affiliation:

1. Netaji Subhash Engineering College, India

2. Indian Statistical Institute, India

3. Jadavpur University, India

Abstract

The gene expression dataset generated by DNA microarray technology contains expression profiles of huge quantities of genes for very small samples. Among these genes, a very small number of genes are informative for cancer sample identification and classification. Informative genes finding is an essential task of microarray gene expression data analysis. Here, a new hybrid gene selection-sample classification model (NHGSSC) is proposed for selection of relevant genes and classification of cancer samples. The NHGSSC performs two tasks-gene selection and sample classification. For gene selection, a new hybrid single filter and α-depth limited best first search based single wrapper method (SFα-BFSSW) is proposed. From these subsets, highly informative genes are selected by counting frequency of occurrence (FO) of every gene. Then SFα-BFSSW method-based ensemble classifier (SFα-BFSSWEC) is built by combining the classifiers created for the selected gene subsets. Experimental results demonstrate the superiority of the NHGSSC to other existing models.

Publisher

IGI Global

Reference14 articles.

1. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia

2. Chin, A. J., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, Unsupervised, and Semisupervised Feature Selection: A Review on Gene Selection. IEEE Trans. on Computational Biology and Bioinformatics.

3. NP-completeness of searches for smallest possible feature sets.;S.Davies;Proceedings of the AAAI Fall Symposium on Relevance,1994

4. MINIMUM REDUNDANCY FEATURE SELECTION FROM MICROARRAY GENE EXPRESSION DATA

5. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3