An Ultra-Fast Method for Clustering of Big Genomic Data

Author:

Kenidra Billel1,Benmohammed Mohamed2

Affiliation:

1. National Superior Institute of Computer Science (ESI), Constantine, Algeria

2. Lire Laboratory, University of Constantine-2, Constantine, Algeria

Abstract

The clustering process is used to identify cancer subtypes based on gene expression and DNA methylation datasets, since cancer subtype information is critically important for understanding tumor heterogeneity, detecting previously unknown clusters of biological samples, which are usually associated with unknown types of cancer will, in turn, gives way to prescribe more effective treatments for patients. This is because cancer has varying subtypes which often respond disparately to the same treatment. While the DNA methylation database is extremely large-scale datasets, running time still remains a major challenge. Actually, traditional clustering algorithms are too slow to handle biological high-dimensional datasets, they usually require large amounts of computational time. The proposed clustering algorithm extraordinarily overcomes all others in terms of running time, it is able to rapidly identify a set of biologically relevant clusters in large-scale DNA methylation datasets, its superiority over the others has been demonstrated regarding its relative speed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3