Enhancing IoT Security

Author:

Jones Rebet Keith1ORCID

Affiliation:

1. Capitol Technology University, USA

Abstract

This chapter explores the application of advanced deep learning architectures, namely convolutional neural networks (CNNs) and recurrent neural networks (RNNs), for the detection of botnet activities in internet of things (IoT) networks. Addressing the growing concern of IoT security, the study develops and evaluates deep learning models to identify complex patterns of botnet behavior. The models demonstrate high accuracy and precision, outperforming traditional machine learning methods in botnet detection. However, challenges related to the computational demands of these models and the evolving nature of cyber threats are also acknowledged. Future research directions include optimizing these models for diverse IoT environments and enhancing their adaptability to new cyber threats. This research provides valuable insights into the application of neural networks in cybersecurity, offering a promising approach to enhancing IoT security.

Publisher

IGI Global

Reference85 articles.

1. Efficient Security and Privacy of Lossless Secure Communication for Sensor-based Urban Cities.;R.Abbasi;IEEE Sensors Journal,2023

2. Adhikari, U., Pan, S., Morris, T., Borges, R., & Beaver, J. (2019). Industrial Control System (ICS) Cyber Attack Datasets. Retrieved from https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

3. Millimeter-wave channel modeling in a VANETs using coding techniques

4. Al HarthiM. A. S.Al BalushiM. M. Y.Al BadiM. A. H.Al KarakiJ.OmarM. (n.d.). Metaverse Adoption in UAE Higher Education: A Hybrid SEM-ANN Approach.......... 98 Mohammad Daradkeh. Boshra Aldhanhani, Amjad Gawanmeh, Shadi Atalla and Sami Miniaoui.

5. Al-KarakiJ. N.OmarM.GawanmehA.JonesA. (2023). Advancing CyberSecurity Education and Training: Practical Case Study of Running Capture the Flag (CTF) on the Metaverse vs. Physical Settings. IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3