Cardiovascular Risk Assessment With Current Machine Learning Methods and Future Integration of Quantum Networks

Author:

Ramyasri M. M.1,Yoga M.1,Tamilarasu P.2,Raj Madan1,Maria Subiksha S.1,Abhishek S.1

Affiliation:

1. Kongu Engineering College, India

2. K.S. Rangasamy College of Technology, India

Abstract

Heart strokes represent a significant global health concern, affecting individuals across diverse age groups, including children and teenagers. By applying the power of machine learning and analyzing crucial indicators such as age, gender, body mass index, average glucose level, smoking habits, employment status, and living conditions, the authors aim to predict the occurrence of heart strokes even before they happen. Various machine learning techniques, including support vector machines (SVM), logistic regression, gaussian naive bayes, k-nearest neighbor's (KNN), decision trees, random forest, and XGBoost, are employed to classify an individual's stroke risk level. The assessment offers a comprehensive comparison of these algorithms, ultimately identifying the most effective approach. Additionally, the authors explore the integration of quantum networks to enhance the predictive capabilities of these machine learning models, potentially revolutionizing the accuracy and efficiency of heart stroke prediction.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3