A Novel Approach for Intrusion Detection System Using Deep Learning Architecture

Author:

Om Kumar C. U.1ORCID,Sinha Nitika1ORCID,Suguna M.1,Sudhakaran G.1ORCID,Chaubey Nirbhay Kumar2ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai, India

2. Ganpat University, Gujarat, India

Abstract

In recent years, network security has become increasingly complex due to rapid advancements in information and communication technologies. This complexity exposes systems to numerous potential threats. To tackle this challenge, we proposed an intrusion detection system achieving 99% accuracy and superior performance on critical metrics. This paper offers not only the authors' model but also a thorough comparative analysis. They evaluate established models and novel configurations combining diverse elements, algorithms, and deep learning models. Extensive training and testing on NSL KDD and UNSW NB15 datasets ensure comprehensive evaluation, providing a nuanced understanding of this system's performance. This research contributes significantly to network security and serves as a valuable reference for future studies in the field.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3