Language Resource Acquisition for Low-Resource Languages in Digital Discourses

Author:

Pannerselvam Kathiravan1ORCID,Rajiakodi Saranya1,Chakravarthi Bharathi Raja2ORCID

Affiliation:

1. Central University of Tamil Nadu, India

2. University of Galway, Ireland

Abstract

This chapter explores the acquisition of language resources for low-resource languages in digital discourse, focusing on code-mixed content in social media posts and comments. Comprehensive language resources enhance our understanding of language usage patterns in online discussions. The methodology includes data collection, annotation, and automated tools, resulting in a practical framework. Challenges addressed in the chapter include data diversity, annotation complexity, linguistic variability, limited annotated data, and ethical considerations. Solutions proposed range from robust data preprocessing techniques to contextual analysis approaches, ensuring acquired quality and ethical use of resources. The chapter also discusses future directions, paving the way for further research and technology development in natural language processing and sociolinguistics. This chapter equips researchers and practitioners with essential knowledge and tools for advancing linguistic analysis and technological applications in the evolving digital landscape.

Publisher

IGI Global

Reference32 articles.

1. MSIR@FIRE: A Comprehensive Report from 2013 to 2016

2. DravidianCodeMix: sentiment analysis and offensive language identification dataset for Dravidian languages in code-mixed text

3. Findings of the Sentiment Analysis of Dravidian Languages in Code-Mixed Text.;B. R.Chakravarthi;CEUR Workshop Proceedings,2021

4. Code-switching | Linguistic Benefits & Challenges | Britannica. (n.d.). Retrieved September 16, 2023, from https://www.britannica.com/topic/code-switching

5. Depicting a Neural Model for Lemmatization and POS Tagging of Words from Palaeographic Stone Inscriptions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3