Evolutionary Wavelet Neural Network Ensembles for Breast Cancer and Parkinson's Disease Prediction

Author:

Kaliannan Kalaiselvi1,Deepa Thilak K.1ORCID,Bhuvaneswari R.2,Prakash U. M.1,Kumaresan K.3,Selvan Shitharth4ORCID

Affiliation:

1. SRM Institute of Science and Technology, India

2. SRM Institute of Science and Technology, India & College of Engineering and Technology, Chennai, India

3. KSR College of Engineering, India

4. Kebri Dehar University, Ethiopia

Abstract

This chapter introduces a novel approach for the prediction of breast cancer and Parkinson's disease. The authors propose an ensemble of E-WNNs to enhance the accuracy and robustness of predictive models. To predict breast cancer from complicated medical data, the E-WNN ensemble uses wavelet transforms in neural networks. The ensemble's networks' structure and attributes are adjusted using evolutionary algorithms to develop a powerful forecasting framework. To predict Parkinson's disease, they employ E-WNN to study clinical assessments and patient history. They fine-tune ensemble members to discover small patterns that reflect disease progression, leading to a more accurate diagnosis. They evaluate the ensemble's performance in terms of classification accuracy, sensitivity, and specificity, highlighting its potential as a valuable tool for early detection and diagnosis of breast cancer and Parkinson's disease. In this study of medical predictive modeling, evolutionary algorithms and wavelet modification transformations are used to make disease prediction systems more accurate and reliable.

Publisher

IGI Global

Reference12 articles.

1. AmraneM.OukidS.GagaouaI. (2018). Breast cancer classification using machine learning. Electric Electronics. IEEE Xplore.

2. AsriH.MousannifH.Al MoatassimeH. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer. Elsevier.

3. GuptaP.GargS. (2020). Breast cancer prediction using varying parameters of machine learning models. Procedia Computer Science. Elsevier.

4. IslamM. M.HaqueM. R.IqbalH.HasanM. M. (2020). Breast cancer prediction: a comparative study using machine learning techniques. SN Computer. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3