A Comprehensive Analysis of Predicting Future Sale and Forecasting Using Random Forest Regression

Author:

Jothiraj Sivasankari1ORCID,Ishana Chellam S.1,Rajeshwari V.1,Yukta Sri C. K.1

Affiliation:

1. Velammal College of Engineering and Technology, India

Abstract

In the realm of sales prediction, accurately forecasting future sales is a critical challenge for businesses seeking to optimize marketing strategies and resource allocation. The conventional methodology for sales prediction often involves linear regression, which may not capture the intricate, non-linear relationships between advertising expenditures and sales. Consequently, the algorithm proposed here is an innovative solution utilizing random forest regression. Random forest is a versatile ensemble learning technique that can effectively model complex interactions among advertising channels and their impact on sales. By harnessing the collective wisdom of multiple decision trees, this method can offer superior predictive accuracy compared to traditional linear approaches. The results demonstrate that this random forest regression model outperforms existing methodologies, providing a more robust framework for future sales prediction.

Publisher

IGI Global

Reference15 articles.

1. Sales prediction using machine learning algorithms;P.Bajaj;Int. J. Recent Technol. Eng.,2019

2. Bhuvaneswari & Venetia. (2021). Predicting periodical sales of products using a machine learning algorithm. Int. J. Nonlinear Anal. Appl., 12, 1611-1630.

3. Chaitanya & Sravanth. (2023). Exploring Future Sales Prediction using Classification and Regression. Academic Press.

4. An Improved Random Forest Algorithm for Predicting Employee Turnover

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3