Nanotechnology for Improved Crop Resilience in Challenging Environments

Author:

Rasool Arshad1,Tariq Milka2,Asif Muhammad3,Shah Ghulam Mujtaba4,Fatima Rabia5ORCID,Majeed Muhammad6ORCID,Aziz Robina7,Khan Jehanzeb8ORCID,Hussain Khadim9,Ozodbek Abduraimov10

Affiliation:

1. Minhaj University, Lahore, Pakistan

2. University of Agriculture, Faisalabad, Pakistan

3. Punjab University, Lahore, Pakistan

4. Hazara University, Mansehra, Pakistan

5. Clarkson University, USA

6. University of Gujrat, Pakistan

7. Government College, Women University, Sialkot, Pakistan

8. Government Postgraduat College, Kohat, Pakistan

9. Islamia University, Bahawalpur, Pakistan

10. Academy Sciences, Uzbekistan

Abstract

The global agricultural landscape faces unprecedented challenges, including climate change, soil degradation, and water scarcity, necessitating innovative approaches to enhance crop resilience. Nanotechnology has emerged as a promising avenue for addressing these challenges by offering precise tools to manipulate and engineer materials at the nanoscale. This chapter explores the application of nanotechnology to enhance crop resilience in challenging environments. Nanomaterials, such as nanoparticles and nanocomposites, exhibit unique physicochemical properties that can positively impact plant growth, stress response, and overall crop performance. Engineered nanomaterials have demonstrated the ability to enhance nutrient uptake, mitigate abiotic stressors, and bolster plant defense mechanisms. Additionally, nanoscale delivery systems enable targeted and controlled release of agrochemicals, optimizing their efficacy while minimizing environmental impact. This chapter highlights recent advancements in nanotechnology-driven strategies to improve crop resilience, encompassing nanoscale nutrient delivery, stress-responsive nanomaterials, and precision agriculture technologies. Furthermore, the potential risks and ethical considerations associated with nanotechnology in agriculture are discussed. Overall, the integration of nanotechnology holds great promise for sustainable agriculture, offering novel solutions to ensure food security and mitigate the impact of challenging environmental conditions on global crop production.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3