Deep Learning-Based Methodology for Tracking Cybersecurity in Networked Computers

Author:

Dhabliya Dharmesh1ORCID,Jebaraj N. R. Solomon2,Sinha Sanjay Kumar3,Uchil Asha4,Dhablia Anishkumar5,Raja Kumar Jambi Ratna6ORCID,Pramanik Sabyasachi7ORCID,Gupta Ankur8ORCID

Affiliation:

1. Vishwakarma Institute of Information Technology, India

2. Jain University, India

3. Vivekananda Global University, India

4. ATLAS SkillTech University, India

5. Altimetrik India Pvt. Ltd., India

6. Genba Sopanrao Moze College of Engineering, India

7. Haldia Institute of Technology, India

8. Vaish College of Engineering, India

Abstract

Effective surveillance of cybersecurity is essential for safeguarding the security of computer networks. Nevertheless, due to the increasing scope, complexity, and amount of data created by computer networks, cybersecurity monitoring has become a more intricate issue. The difficulty of correctly and effectively monitoring computer network cybersecurity is a challenge faced by traditional approaches examining a greater quantity of data. Hence, using deep learning models to oversee computer network cybersecurity becomes necessary. This chapter introduces a technique for overseeing the cybersecurity of computer networks by using deep learning knowledge about models. The combination of CNN (convolutional neural networks) and LSTM (long short-term memory) models is used for monitoring the cybersecurity of computer networks. This combination enhances the accuracy of classifying network cybersecurity problems. The CICIDS2017 dataset is used for training and evaluating the suggested model.

Publisher

IGI Global

Reference27 articles.

1. A systematic literature review for network intrusion detection system (IDS)

2. AhamadS.VeeraiahV.RameshJ. V. N.RajadeviR.ReejaS. R.PramanikS.GuptaA. (2023). Deep Learning based Cancer Detection Technique, Thrust Technologies’ Effect on Image Processing. IGI Global.

3. Dynamic distributed generative adversarial network for intrusion detection system over internet of things

4. Big Data Architecture for Network Security

5. Anomaly-based intrusion detection system for IoT application

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3