Affiliation:
1. University of Otago, New Zealand
Abstract
Software development effort estimation is important for quality management in the software development industry, yet its automation still remains a challenging issue. Applying machine learning algorithms alone often cannot achieve satisfactory results. This paper presents an integrated data mining framework that incorporates domain knowledge into a series of data analysis and modeling processes, including visualization, feature selection, and model validation. An empirical study on the software effort estimation problem using a benchmark dataset shows the necessity and effectiveness of the proposed approach.
Subject
Decision Sciences (miscellaneous),Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献