An Ontology Based Model for Document Clustering

Author:

Sridevi U. K.1,Nagaveni N.2

Affiliation:

1. Sri Krishna College of Engineering and Technology, India

2. Coimbatore Institute of Technology, India

Abstract

Clustering is an important topic to find relevant content from a document collection and it also reduces the search space. The current clustering research emphasizes the development of a more efficient clustering method without considering the domain knowledge and user’s need. In recent years the semantics of documents have been utilized in document clustering. The discussed work focuses on the clustering model where ontology approach is applied. The major challenge is to use the background knowledge in the similarity measure. This paper presents an ontology based annotation of documents and clustering system. The semi-automatic document annotation and concept weighting scheme is used to create an ontology based knowledge base. The Particle Swarm Optimization (PSO) clustering algorithm can be applied to obtain the clustering solution. The accuracy of clustering has been computed before and after combining ontology with Vector Space Model (VSM). The proposed ontology based framework gives improved performance and better clustering compared to the traditional vector space model. The result using ontology was significant and promising.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hindi Text Summarization Using Sequence to Sequence Neural Network;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-10-13

2. A New Dynamic Neighbourhood-Based Semantic Dissimilarity Measure for Ontology;International Journal of Intelligent Information Technologies;2019-07

3. Applying Semantic Relations for Automatic Topic Ontology Construction;Developments and Trends in Intelligent Technologies and Smart Systems;2018

4. Performance Analysis of Parallel Particle Swarm Optimization Based Clustering of Students;2015 IEEE 15th International Conference on Advanced Learning Technologies;2015-07

5. Process Model for Content Extraction from Weblogs;International Journal of Intelligent Information Technologies;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3