Associative Classification based Human Activity Recognition and Fall Detection using Accelerometer

Author:

Hemalatha C. Sweetlin1,Vaidehi V.1

Affiliation:

1. Department of Information Technology, Madras Institute of Technology, Anna University, Chennai, Tamil Nadu, India

Abstract

Human fall poses serious health risks especially among aged people. The rate of growth of elderly population to the total population is increasing every year. Besides causing injuries, fall may even lead to death if not attended immediately. This demands continuous monitoring of human movements and classifying normal low-level activities from abnormal event like fall. Most of the existing fall detection methods employ traditional classifiers such as decision trees, Bayesian Networks, Support Vector Machine etc. These classifiers may miss to cover certain hidden and interesting patterns in the data and thus suffer high false positives rates. Hence, there is a need for a classifier that considers the association between patterns while classifying the input instance. This paper presents a pattern mining based classification algorithm called Frequent Bit Pattern based Associative Classification (FBPAC) that distinguishes low-level human activities from fall. The proposed system utilizes single tri-axial accelerometer for capturing motion data. Empirical studies are conducted by collecting real data from tri-axial accelerometer. Experimental results show that within a time-sensitive sliding window of 10 seconds, the proposed algorithm achieves 99% accuracy for independent activity and 92% overall accuracy for activity sequence. The algorithm gives reasonable accuracy when tested in real time.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A design failure pre-alarming system using score- and vote-based associative classification;Expert Systems with Applications;2021-02

2. Behavior modelling and sensing for machinery operations using smartphone’s sensor data: A case study of forage maize sowing;International Journal of Agricultural and Biological Engineering;2019

3. Enhanced Complex Event Processing Framework for Geriatric Remote Healthcare;Handbook of Research on Investigations in Artificial Life Research and Development;2018

4. Comparative Study of CAMSHIFT and RANSAC Methods for Face and Eye Tracking in Real-Time Video;International Journal of Intelligent Information Technologies;2017-04

5. Fuzzy Rule Based Environment Monitoring System for Weather Controlled Laboratories using Arduino;International Journal of Intelligent Information Technologies;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3