Affiliation:
1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
2. College of Computer Science, Chongqing University, Chongqing, China
Abstract
Cloud computing, with dependable, consistent, pervasive, and inexpensive access to geographically distributed computational capabilities, is becoming an increasingly popular platform for the execution of scientific applications such as scientific workflows. Scheduling multiple workflows over cloud infrastructures and resources is well recognized to be NP-hard and thus critical to meeting various types of Quality-of-Service (QoS) requirements. In this work, the authors consider a multi-objective scientific workflow scheduling framework based on the dynamic game-theoretic model. It aims at reducing make-spans, cloud cost, while maximizing system fairness in terms of workload distribution among heterogeneous cloud virtual machines (VMs). The authors consider randomly-generated scientific workflow templates as test cases and carry out extensive real-world tests based on third-party commercial clouds. Experimental results show that their proposed framework outperforms traditional ones by achieving lower make-spans, lower cost, and better system fairness.
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献