Internet of Things-Based Agricultural Mechanization Using Neural Network Extreme Learning on Rough Set

Author:

Chen Jian1,Chen Xiaohua1,Zeng Qingyan1,Singh Ishbir2,Sharma Amit3

Affiliation:

1. Jiangxi University of Engineering, China

2. Gulzar Group of Institutions, Ludhiana, India

3. Gulzar Group of Institution, Ludhiana, India

Abstract

Recently, the basic functioning of monitoring in internet of things (IoT) is to apply the monitored data to the database for the regular analysis through mobile or computer platform. The purpose of this article is to highlight the application scope of IoT knowledge and to present the model of agricultural IoT for prediction by studying the influence of IoT technology towards modern agriculture. In order to explore the uncertain characteristics of the development of agricultural mechanization, the evaluation index system is simplified through the existing rough set theory. The neural network model is established with five random provinces and cities in 31 provinces and municipalities as test samples. By comparing the data of the neural network model established before and after the reduction, the results show that the index coefficient is reduced by about 60% based on the fixed information before and after the reduction. The simulation evaluation accuracy established by the artificial neural network model is 100%, which is consistent with the results of the original index system.

Publisher

IGI Global

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3