Forecasting Rice Production in West Bengal State in India

Author:

Chaudhuri Arindam1

Affiliation:

1. Faculty of Post Graduate Studies and Research, Computer Engineering and Technology, Marwadi Education Foundation Group of Institutions, Rajkot, Gujarat, India

Abstract

Forecasting rice production is a challenging problem in agricultural statistics. The inherent difficulty lies in demand and supply affected by many uncertain factors viz. economic policies, agricultural factors, credit measures, foreign trade etc. which interact in a complex manner. Since last few decades, Statistical techniques are used for developing predictive models to estimate required parameters. Determination of nature of rice production time series data is difficult, expensive, time consuming and involves tedious tests. In this paper, we use Interval Type Fuzzy Auto Regressive Integrated Moving Average (ITnARIMA), Adaptive Neuro Fuzzy Inference System (ANFIS) and Modified Regularized Least Squares Fuzzy Support Vector Regression (MRLSFSVR) for prediction of Productivity Index percent (PI %) of rice production time series data and compare it with traditional Statistical tool of Multiple Regression. The accuracies of ITnARIMA and ANFIS techniques are evaluated as relatively similar. It is found that ANFIS exhibits high performance than ITnARIMA, MRLSFSVR and Multiple Regression for predicting PI %. The performance comparison shows that Computational Intelligence paradigm is a promising tool for minimizing uncertainties in rice production data. Further Computational Intelligence techniques also minimize potential inconsistency of correlations.

Publisher

IGI Global

Subject

Information Systems

Reference52 articles.

1. Models for studying rice crop weather relationship.;R.Agrawal;Mausam (New Delhi),1986

2. Altun, H., & Gelen, G. (2004). Enhancing Performance of MLP/RBF neural classifiers via multivariate data distribution scheme. In Proceedings of International Conference on Computational Intelligence, Nicosia, North Cyprus (pp. 1–6).

3. Principles of Forecasting

4. Baier, W. (1977). Crop weather models and their use in yield assessments. (Technical Note Number 151, pp. 48). World Meteorological Organization, Geneva.

5. Optimizing feedforward artificial neural network architecture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3