New Design Approach to Handle Spatial Vagueness in Spatial OLAP Datacubes

Author:

Edoh-Alove Elodie1,Bimonte Sandro2,Pinet François2,Bédard Yvan3

Affiliation:

1. Irstea Centre de Clermont-Ferrand, Aubière, France & Centre de Recherche en Géomatique et Département des Sciences Géomatique, Université Laval, Quebec, Canada

2. Irstea Centre de Clermont-Ferrand, Aubière, France

3. Centre de Recherche en Géomatique et Département des Sciences Géomatique, Université Laval, Quebec, Canada

Abstract

Spatial-OLAP (SOLAP) technologies are dedicated to multidimensional analysis of large volumes of (spatial) data. Spatial data are subject to different types of uncertainty, in particular spatial vagueness. Although several researches propose new models to cope with spatial vagueness, their integration in SOLAP systems is still in an embryonic state. Also, analyzing multidimensional data with metadata brought by the exploitation of the new models can be too complex and demanding for decision-makers. To help reduce spatial vagueness consequences on the exactness of SOLAP analysis queries, the authors present a new approach for designing SOLAP datacubes based on end-users' tolerance to the risks of misinterpretation of fact data. An experimentation of the new approach on agri-environmental data is also proposed.

Publisher

IGI Global

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3