Design and Early Simulations of Next Generation Intelligent Energy Systems

Author:

Fainti Rafik1,Nasiakou Antonia1,Tsoukalas Eleftherios1,Vavalis Manolis1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

Abstract

The aim of this paper is twofold. Firstly, to briefly present the overall objectives and the expected outcome of an on-going effort concerning the design the implementation and the analysis of next generation intelligent energy systems based on anticipatory control and a set of ICT emerging technologies and innovations. Secondly, to describe an early proof-of-concept implementation and the preliminary experimentation of a simulation platform focused on holistic detailed studies of electric energy markets. The proposed platform allows us to elucidate issues related to the open and smart participation of producers and consumers on large-scale energy e-markets. Based on an existing simulation system we present the required theoretical studies, the enabling technologies, and the practical tools that contribute to the development of such a platform capable of truly large scale simulations that cover real life scenarios and stress most components and modules of next generation smart energy markets. Elements of game theory are utilized to solve the optimization problem related to the maximization of the social welfare of producers and consumers. Selected simulation results associated with the basic required characteristics of our platform are presented.

Publisher

IGI Global

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Data Driven Partitioning of Smart Grid for Improving Power Efficiency by Combinining K-Means and Fuzzy Methods;Handbook of Dynamic Data Driven Applications Systems;2022

2. Backpropagation Neural Network for Interval Prediction of Three-Phase Ampacity Level in Power Systems;Deep Learning and Neural Networks;2020

3. Real time data analytics platform for power grid smart applications;2017 14th International Conference on the European Energy Market (EEM);2017-06

4. Intelligent Bidding in Smart Electricity Markets;Renewable and Alternative Energy;2017

5. Fusion of Gaussian Process Kernel Regressors for Fault Prediction in Intelligent Energy Systems;International Journal on Artificial Intelligence Tools;2016-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3