Framework for Visualization of GeoSpatial Query Processing by Integrating Redis With Spark

Author:

Vasavi S.1,V.N. Priyanka G 1,Gokhale Anu A.2

Affiliation:

1. V.R. Siddhartha Engineering College, Vijayawada, India

2. Illinois State University, Normal, USA

Abstract

Nowadays we are moving towards digitization and making all our devices produce a variety of data, this has paved the way to the emergence of NoSQL databases like Cassandra, MongoDB, and Redis. Big data such as geospatial data allows for geospatial analytics in applications such as tourism, marketing, and rural development. Spark frameworks provide operators storage and processing of distributed data. This article proposes “GeoRediSpark” to integrate Redis with Spark. Redis is a key-value store that uses an in-memory store, hence integrating Redis with Spark can extend the real-time processing of geospatial data. The article investigates storage and retrieval of the Redis built-in geospatial queries and has added two new geospatial operators, GeoWithin and GeoIntersect, to enhance the capabilities of Redis. Hashed indexing is used to improve the processing performance. A comparison on Redis metrics with three benchmark datasets is made. Hashset is used to display geographic data. The output of geospatial queries is visualized to the type of place and the nature of the query using Tableau.

Publisher

IGI Global

Reference33 articles.

1. Locating a point on a spherical surface relative to a spherical polygon of arbitrary shape

2. Information Systems Design and Intelligent Applications;V.Bhateja;Proceedings of Fourth International Conference INDIA 2017,2018

3. Cihan, B. (2016). Machine Learning on Steroids with the New Redis-ML Module. Retrieved from, https://redislabs.com/blog/machine-learning-steroids-new-redis-ml-module/

4. Datos.gob.es. (2013). Data Processing and Visualization Tools. ePSI platform Topic Report.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3