Developments on the Regulatory Network Computational Device

Author:

Lopes Rui1,Costa Ernesto1

Affiliation:

1. CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

Abstract

Evolutionary Algorithms (EA) approach differently from nature the genotype-phenotype relationship, a view that is a recurrent issue among researchers. Recently, some researchers have started exploring computationally the new comprehension of the multitude of regulatory mechanisms that are fundamental in both processes of inheritance and of development in natural systems, by trying to include those mechanisms in the EAs. One of the first successful proposals was the Artificial Regulatory Network (ARN) model. Soon after some variants of the ARN, including different improvements over the base model, were tested. In this paper, the authors revisit the Regulatory Network Computational Device (ReNCoDe), now empowered with feedback connections, providing a formal demonstration of the typical solutions evolved with this representation. The authors also present some preliminary results of using a variant of the model to deal with problems with multiple outputs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3