Clustering of Relevant Documents Based on Findability Effort in Information Retrieval

Author:

Rajagopal Prabha1ORCID,Aghris Taoufik2,Fettah Fatima-Ezzahra2,Ravana Sri Devi3ORCID

Affiliation:

1. Monash University, Malaysia

2. EMINES-School of Industrial Management, Mohammed VI Polytechnic University, Morocco

3. University of Malaya, Malaysia

Abstract

A user expresses their information need in the form of a query on an information retrieval (IR) system that retrieves a set of articles related to the query. The performance of the retrieval system is measured based on the retrieved content to the query, judged by expert topic assessors who are trained to find this relevant information. However, real users do not always succeed in finding relevant information in the retrieved list due to the amount of time and effort needed. This paper aims 1) to utilize the findability features to determine the amount of effort needed to find information from relevant documents using the machine learning approach and 2) to demonstrate changes in IR systems' performance when the effort is included in the evaluation. This study uses a natural language processing technique and unsupervised clustering approach to group documents by the amount of effort needed. The results show that relevant documents can be clustered using the k-means clustering approach, and the retrieval system performance varies by 23%, on average.

Publisher

IGI Global

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Basic Analytics, Medical Data Sources, and Advanced Data Analytics in the Medical Sector;Journal of Biomedical and Sustainable Healthcare Applications;2024-01-05

2. A Review of Medical Data Sources, and Advanced Data Analytics in the Medical Sector;Journal of Biomedical and Sustainable Healthcare Applications;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3