Affiliation:
1. Department of Computer Science, Yarmouk University, Irbid, Jordan
Abstract
Artificial Bee Colony algorithm (ABC) is a new optimization algorithms used to solve several optimization problems. The algorithm is a swarm-based that simulates the intelligent behavior of honey bee swarm in searching for food sources. Several variations of ABC have been three existing solution vectors, the new solution vectors will replace the worst three vectors in the food source proposed to enhance its performance. This paper proposes a new variation of ABC that uses multi-parent crossover named multi parent crossover operator artificial bee colony (MPCO-ABC). In the proposed technique the crossover operator is used to generate three new parents based on memory (FSM). The proposed algorithm has been tested using a set of benchmark functions. The experimental results of the MPCO-ABC are compared with the original ABC, GABC. The results prove the efficiency of MPCO-ABC over ABC. Another comparison of MPCO-ABC results made with the other variants of ABC that use crossover and/or mutation operator. The MPCO-ABC almost always shows superiority on all test functions.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献