An Enhanced Semantic Layer for Hybrid Recommender Systems

Author:

Cantador Iván1,Castells Pablo1,Bellogín Alejandro1

Affiliation:

1. Universidad Autónoma de Madrid, Spain

Abstract

Recommender systems have achieved success in a variety of domains, as a means to help users in information overload scenarios by proactively finding items or services on their behalf, taking into account or predicting their tastes, priorities, or goals. Challenging issues in their research agenda include the sparsity of user preference data and the lack of flexibility to incorporate contextual factors in the recommendation methods. To a significant extent, these issues can be related to a limited description and exploitation of the semantics underlying both user and item representations. The authors propose a three-fold knowledge representation, in which an explicit, semantic-rich domain knowledge space is incorporated between user and item spaces. The enhanced semantics support the development of contextualisation capabilities and enable performance improvements in recommendation methods. As a proof of concept and evaluation testbed, the approach is evaluated through its implementation in a news recommender system, in which it is tested with real users. In such scenario, semantic knowledge bases and item annotations are automatically produced from public sources.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group-Based Personalized News Recommendation with Long- and Short-Term Fine-Grained Matching;ACM Transactions on Information Systems;2023-08-18

2. Personalized News Recommendation: Methods and Challenges;ACM Transactions on Information Systems;2023-01-10

3. Maser: Multi-Order Attention and Semantic-Enhanced Representation Model for Complex Text Recommendation;2023

4. A Deep Investigation on News Aggregation and Recommendation System: NARS;2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT);2022-12-26

5. Semantic Knowledge Graphs for the News: A Review;ACM Computing Surveys;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3