A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards

Author:

Mathews Adam J.1

Affiliation:

1. Department of Geography, Oklahoma State University, Stillwater, OK, USA

Abstract

This paper explores the use of compact digital cameras to remotely estimate spectral reflectance based on unmanned aerial vehicle imagery. Two digital cameras, one unaltered and one altered, were used to collect four bands of spectral information (blue, green, red, and near-infrared [NIR]). The altered camera had its internal hot mirror removed to allow the sensor to be additionally sensitive to NIR. Through on-ground experimentation with spectral targets and a spectroradiometer, the sensitivity and abilities of the cameras were observed. This information along with on-site collected spectral data were used to aid in converting aerial imagery digital numbers to estimates of scaled surface reflectance using the empirical line method. The resulting images were used to create spectrally-consistent orthophotomosaics of a vineyard study site. Individual bands were subsequently validated with in situ spectroradiometer data. Results show that red and NIR bands exhibited the best fit (R2: 0.78 for red; 0.57 for NIR).

Publisher

IGI Global

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3