An Approach for Detecting Local Outliers in Grid Queries

Author:

Li Shuang1,Yao Xiaoguo1

Affiliation:

1. Hunan International Economics University, Changsha, China

Abstract

The density local outlier factor algorithm (LOF) needs to calculate the distance matrix for k-nearest neighbor search. The algorithm has high time complexity and is not suitable for the detection of large-scale data sets. A local outlier detection algorithm is proposed based on grid query (LOGD). In the algorithm, the k other data points closest to the data point in the target grid must be in the target grid or in the nearest neighboring grid of the target grid, it is used to improve the neighborhood query operation of the LOF algorithm, the calculation amount of the LOF algorithm is reduced in the neighborhood query. Experimental results show that the proposed LODG algorithm can effectively reduce the time of outlier detection under the condition, the detection accuracy of the original LOF algorithm is basically the same.

Publisher

IGI Global

Reference25 articles.

1. An efficient algorithm for distributed density-based outlier detection on big data

2. LOF

3. A Density-Based Local Outlier Detecting Algorithm.;C. P.Hu;Journal of Computer Research and Development,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3