Vehicle Type Classification Using Hybrid Features and a Deep Neural Network

Author:

Sathyanarayana N. 1,Narasimhamurthy Anand M.2

Affiliation:

1. Vemana Institute of Technology, India

2. International School of Engineering, Bengaluru, India

Abstract

In this research, a framework incorporating hybrid features is proposed to improve the performance of vehicle type classification. The proposed model includes a camera response model to enhance the collected images and a Gaussian mixture model to localize the object of interest. The feature vectors are extracted from the pre-processed images using Gabor features, histogram of oriented gradients, and local optimal-oriented pattern. The hybrid set of features discriminate the classes better; further, an ant colony optimizer is used to reduce the dimension of the extracted feature vectors. Finally, deep neural network is used to classify the types of vehicles in the images. The proposed model was tested on the MIO vision traffic camera dataset and a real-world dataset consisting of videos of multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures like AlexNet, Inception V3, ResNet 50, VGG 19, Xception, and DenseNet.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3