An Efficient All Shapes Busy List Processor Allocation Algorithm for 3D Mesh Multicomputers

Author:

Bani-Mohammad Saad1

Affiliation:

1. Al al-Bayt University, Department of Computer Science, Mafraq, Jordan

Abstract

Contiguous processor allocation is useful for security and accounting reasons. This is due to the allocated jobs are separated from one another, where each sub-mesh of processors is allocated to an exclusive job request, and the allocated sub-mesh has the same size and shape of the requested job. The size and shape constraint leads to high processor fragmentation. Most recent contiguous allocation strategies suggested for 3D mesh-connected multiconputers try all possible orientations of an allocation request when allocation fails for the requested orientation, which reduces processor fragmentation and hence improves system performance. However, none of them considers all shapes of the request in the process of allocation. To generalize this restricted rotation, we propose, in this paper, a new contiguous allocation strategy for 3D mesh-connected multicomputers, referred to as All Shapes Busy List (ASBL for short), which takes into consideration all possible contiguous request shapes when attempting allocation for a job request. ASBL depends on the list of allocated sub-meshes, in the method suggested in (Bani-Mohammad et al., 2006), for selecting an allocated sub-mesh. The performance of the proposed ASBL allocation strategy has been evaluated considering several important scheduling strategies under a variety of system loads based on different job size distributions. The simulation results have shown that the ASBL allocation strategy improves system performance in terms of parameters such as the average turnaround time of jobs and system utilization under all scheduling strategies considered.

Publisher

IGI Global

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3