A Value Based Dynamic Resource Provisioning Model in Cloud

Author:

Sood Sandeep K.1

Affiliation:

1. Department of Computer Science & Engineering, Guru Nanak Dev University Regional Campus, Gurdaspur, Punjab, India

Abstract

Cloud computing has become an innovative computing paradigm, which aims at providing reliable, customized, Quality of Service (QoS) and guaranteed computing infrastructures for users. Efficient resource provisioning is required in cloud for effective resource utilization. For resource provisioning, cloud provides virtualized computing resources that are dynamically scalable. This property of cloud differentiates it from the traditional computing paradigm. But the initialization of a new virtual instance causes a several minutes delay in the hardware resource allocation. Furthermore, cloud provides a fault tolerant service to its clients using the virtualization. But, in order to attain higher resource utilization over this technology, a technique or a strategy is needed using which virtual machines can be deployed over physical machines by predicting its need in advance so that the delay can be avoided. To address these issues, a value based prediction model in this paper is proposed for resource provisioning in which a resource manager is used for dynamically allocating or releasing a virtual machine depending upon the resource usage rate. In order to know the recent resource usage rate, the resource manager uses sliding window to analyze the resource usage rate and to predict the system behavior in advance. By predicting the resource requirements in advance, a lot of processing time can be saved. Earlier, a server has to perform all the calculations regarding the resource usage that in turn wastes a lot of processing power thus decreasing its overall capacity to handle the incoming request. The main feature of the proposed model is that a lot of load is being shifted from the individual server to the resource manager as it performs all the calculations and therefore the server is free to handle the incoming requests to its full capacity.

Publisher

IGI Global

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Energy-Aware Task Scheduling in the Cloud Computing Using a Hybrid Cultural and Ant Colony Optimization Algorithm;International Journal of Cloud Applications and Computing;2017-10

2. Resource trading in cloud environments for utility maximisation using game theoretic modelling approach;International Journal of Parallel, Emergent and Distributed Systems;2015-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3