Hybrid High-Performance Computing Algorithm for Gene Regulatory Network

Author:

Elsayad Dina1,Hamad Safawat2,Shedeed Howida Abd-Alfatah1,Tolba Mohamed Fahmy1

Affiliation:

1. Faculty of Computer and Information Sciences, Ain Shams University, Egypt

2. Ain Shams University, Egypt

Abstract

This paper presents a parallel algorithm for gene regulatory network construction, hereby referred to as H2pcGRN. The construction of gene regulatory network is a vital methodology for investigating the genes interactions' topological order, annotating the genes functionality and demonstrating the regulatory process. One of the approaches for gene regulatory network construction techniques is based on the component analysis method. The main drawbacks of component analysis-based algorithms are its intensive computations that consume time. Despite these drawbacks, this approach is widely applied to infer the regulatory network. Therefore, introducing parallel techniques is indispensable for gene regulatory network inference algorithms. H2pcGRN is a hybrid high performance-computing algorithm for gene regulatory network inference. The proposed algorithm is based on both the hybrid parallelism architecture and the generalized cannon's algorithm. A variety of gene datasets is used for H2pcGRN assessment and evaluation. The experimental results indicated that H2pcGRN achieved super-linear speedup, where its computational speedup reached 570 on 256 processing nodes.

Publisher

IGI Global

Subject

Information Systems and Management,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cuckoo Search Augmented MapReduce for Predictive Scheduling With Big Stream Data;International Journal of Sociotechnology and Knowledge Development;2022-02-25

2. Xenobots;International Journal of Sociotechnology and Knowledge Development;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3