Mitigating Black Hole Attacks in Routing Protocols Using a Machine Learning-Based Trust Model
Author:
Affiliation:
1. The Gandhigram Rural Institute (Deemed), India
2. Nehru Arts and Science College, India
3. Karpagam Academy of Higher Education, India
Abstract
Many application domains gain considerable advantages with the internet of things (IoT) network. It improves our lifestyle towards smartness in smart devices. IoT devices are mostly resource-constrained such as memory, battery, etc. So it is highly vulnerable to security attacks. Traditional security mechanisms can't be applied to these devices due to their restricted resources. A trust-based security mechanism plays an important role to ensure security in the IoT environment because it consumes only fewer resources. Thus, it is essential to evaluate the trustworthiness among IoT devices. The proposed model improves trusted routing in the IoT environment by detecting and isolating malicious nodes. This model uses reinforcement learning (RL) where the agent learns the behavior of the node and isolates the malicious nodes to improve the network performance. The model focuses on IoT with the routing protocol for low power and lossy network (RPL) and counters the blackhole attack.
Publisher
IGI Global
Subject
Information Systems and Management,Computer Science Applications
Reference38 articles.
1. Cloud-Based Fuzzy Keyword Search Scheme Over Encrypted Documents
2. IoT-enabled smart grid via SM: An overview
3. Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP
4. A Comparative Analysis of Scalable and Context-Aware Trust Management Approaches for Internet of Things
5. Creating Diverse and Religiously Inclusive Workplace Cultures in Hyper-Connected, Technical, and Cyber-Driven Organizations
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Confronting Current Crises and Critical Challenges of Climate Change;International Journal of Sociotechnology and Knowledge Development;2023-03-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3