Design and Performance Analysis of High Throughput and Low Power RNS-Based FIR Filter Design on FPGA
Author:
Affiliation:
1. Government SKSJ Technological Institute, India
2. Government Engineering College, Chamarajanagara, India
Abstract
A cost-effective finite impulse response (FIR) filter is introduced in this research work through Residue Number System (RNS). The moduli set selected provides the same benefit as that of the shift and add method. The implementation Residue Number System with reduced computational complexity, as well as high-performance finite impulse response filters that employ advanced Vivado Design Suite & Artix-7 field-programmable logic (FPL) devices, are presented in this research work. For a specified 64-tap FIR filter, a classical modulo adder tree is substituted by a binary adder with enhanced accuracy pursued by a single modulo reduction stage and as a result reducing the area constraints by approximately 18%. When compared to the three-multiplier-per-tap two's complement filter, the index arithmetic complex FIR filter that is based on the Quadratic Residue Number System outperforms by approximately 75% and at the same time involving some LEs for filters with more than 8 taps. When compared to the traditional design, a 64-tap filter requires only 41% LEs.
Publisher
IGI Global
Subject
Computer Networks and Communications,Computer Science Applications
Reference29 articles.
1. Software-defined Radios: Architecture, state-of-the-art, and challenges
2. Influence of Impulse Disturbances on Oscillations of Nonlinearly Elastic Bodies
3. On “A New Common Subexpression Elimination Algorithm for Realizing Low-Complexity Higher Order Digital Filters”
4. A low-power multiplier with the spurious power suppression technique. IEEE Transactions on Very Large Scale Integration (VLSI);K. H.Chen;Systems,2007
5. Minimization of switching activities of partial products for designing low-power multipliers. IEEE Transactions on Very Large Scale Integration (VLSI);O. T. C.Chen;Systems,2003
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3