Forward Context-Aware Clickbait Tweet Identification System

Author:

Mundotiya Rajesh Kumar1,Yadav Naina1

Affiliation:

1. Indian Institute of Technology, Varanasi, India

Abstract

Clickbait is an elusive challenge with the prevalence of social media such as Facebook and Twitter that misleads the readers while clicking on headlines. Limited annotated data makes it onerous to design an accurate clickbait identification system. The authors address this problem by purposing deep learning-based architecture with external knowledge which trains on social media post and descriptions. The pre-trained ELMO and BERT model obtains the sentence level contextual feature as knowledge; moreover, the LSTM layer helps to prevail the word level contextual feature. Training has done at different experiments (model with EMLO, model with BERT) with different regularization techniques such as dropout, early stopping, and finetuning. Forward context-aware clickbait tweet identification system (FCCTI) with BERT finetuning and model with ELMO using glove pre-trained embedding is the best model and achieves a clickbait identification accuracy of 0.847, improving on the previous baseline for this task.

Publisher

IGI Global

Subject

Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sarcasm‐based tweet‐level stress detection;Expert Systems;2024-01-10

2. Topic Modeling Techniques for Text Mining Over a Large-Scale Scientific and Biomedical Text Corpus;International Journal of Ambient Computing and Intelligence;2022-04-29

3. Modeling multi-prototype Chinese word representation learning for word similarity;Complex & Intelligent Systems;2021-08-04

4. A novel method for detecting psychological stress at tweet level using neighborhood tweets;Journal of King Saud University - Computer and Information Sciences;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3