Exudate Extraction From Fundus Images Using Machine Learning
Author:
Affiliation:
1. Jain College of Engineering and Technology, India
Abstract
Patients suffering from diabetes have to bear several other disorders due to this. Diabetic Retinopathy is one such disorder which affects diabetic patients. This disorder affects the patient’s eye leading to permanent blindness if left untreated. Another disorder is exudates in which lipid residues leak out from damaged capillaries. It appears as yellow flecks. Hard exudates can lead to life threatening disorders. Detecting Hard exudates help the Ophthalmologist to diagnose the severity of the patient’s condition and in turn help in better medication. This paper presents a method to adjust the contrast of the image which in turn helps in detecting the hard exudates which can be used for further processing. In this work, initially Otsu algorithm is applied and then compared with Machine Learning techniques due to the disadvantage of Otsu.
Publisher
IGI Global
Subject
Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology
Reference15 articles.
1. Detection of exudates from RGB fundus images using 3σ control method
2. Al-Sharfaa, A. H., Yousif, A. Y., & Al-Saadi, E. H. 2021, February. Localization of Optic Disk and Exudates Detection in Retinal Fundus Images. In Journal of Physics: Conference Series (Vol. 1804, No. 1, p. 012128). IOP Publishing
3. Automated detection of diabetic retinopathy using SVM
4. Eadgahi, M. G. F., & Pourreza, H. (2012, October). Localization of hard exudates in retinal fundus image by mathematical morphology operations. In 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE) (pp. 185-189). IEEE.
5. the DIARETDB1 diabetic retinopathy database and evaluation protocol
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hypermixed Convolutional Neural Network for Retinal Vein Occlusion Classification;Disease Markers;2022-11-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3