Avatar-Based Natural Neural Network as a Dynamic Virtual Model

Author:

Veretekhina Svetlana1,Gorbachenko Vladimir2

Affiliation:

1. Russian State Social University, Moscow, Russia

2. Penza State University, Penza, Russian Federation

Abstract

Avatar-based natural neural network (A-B Triple N) is widely used in modern industry created by Prof. Vardan Mkrttchian. The A-B Triple N is a dynamic virtual model of a system, process or service. The A-B Triple N continuously learns and updates its parameters, receiving information from a variety of sensors, correctly representing the state of a biophysical object. When learning, they use current data from sensors, control devices, and from the external bio environment combining actual data with the knowledge gained from specialists in this field. A-B Triple Ns allow you to monitor systems and processes in real time and analyze data in a timely manner to prevent problems before they occur, schedule preventive maintenance, reduces downtime, opens up new business opportunities and plans future updates and new developments.

Publisher

IGI Global

Subject

General Medicine

Reference63 articles.

1. Neural Networks and Deep Learning

2. Alqezweeni, M. M., Gorbachenko, V. I. (2017). Improvement of the learning algorithms in radial basis functions networks for solving the approximation tasks. Models, systems, networks in economics, technology, nature and society, 3(23), 123–138. (in Russian).

3. Efficient solving of boundary value problems using radial basis function networks learned by trust region method.;M. M.Alqezweeni;International Journal of Mathematics and Mathematical Sciences,2018

4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: An overview and recent developments. Computers Methods in Applied Mechanics and Engineering, 139(1–4), 3-47.

5. Trust-region methods for nonlinear elliptic equations with radial basis functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3