Improved Yolov5 and Image Morphology Processing Based on UAV Platform for Dike Health Inspection

Author:

Ma Wei1,Zhang Pei Chang1,Huang Lei1,Zhu Jun Wei1,Lian Yu Tao1,Xiong Jie1,Jin Fan1

Affiliation:

1. School of Electronics and Information Engineering, Shenzhen, China

Abstract

Dike health inspection is crucial in river channel regulating. The conventional manual collapse inspection is inefficient and costly so that the unmanned aerial vehicle (UAV)-based inspection has been widely applied. However, the existing vision-based defect detection methods face challenges, such as lack of defect sample data and closed specified data sets. To address them, a defect detection method based on improved YOLOv5 recognition combined with image morphology processing is proposed for dike health inspection with zero defect samples. Specifically, the coordinate attention mechanism is introduced in YOLOv5 model to improve recognition capability for dikes. Also, a rotating bounding box target detection is designed for arbitrary orientation of dikes under UAV view, due to ineffective horizontal bounding box detection. Furthermore, for suspected defect locating efficiency promotion, the specific recognized area of the dike is isolated in the image morphology process. The results show that the proposed method outperforms the traditional Yolov5 algorithm on recall rate, F1, and mAP.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3