A Novel Multi-Domain Adaptation-Based Method for Blast Furnace Anomaly Detection

Author:

Xiao Xuewen1,Zhou Jiang2ORCID,Xia Yunni3,Gao Xuheng2ORCID,Peng Qinglan4

Affiliation:

1. CISDI Engineering Co., Ltd., China

2. CISDI Information Technology Co., Ltd., China

3. Chongqing University, China

4. Henan University, China

Abstract

In the steelmaking process, ensuring stable and reliable furnace plays a vital role for guaranteeing production quality of steel products. Traditional methods for detecting furnace anomalies in blast furnaces rely on operator judgment models built upon expert knowledge that can be limited by human experience. Moreover, data generated in blast furnace ironmaking process can be multidimensional, non-Gaussian distributed, and periodical, which can be easily affected by environmental and human factors and thus resulting in low accuracy of anomaly detection. Therefore, an online intelligent framework for detecting furnace anomalies is in high need. In this paper, the authors propose a novel anomaly detection method based on a furnace condition parameter-characterization model, a mining model of periodic patterns in the ironmaking process, and a multi-domain adaptive anomaly detection algorithm. They conduct extensive numerical analysis based on real-world production datasets as well to evaluate the effectiveness and accuracy of the method.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems,Software

Reference26 articles.

1. Anomaly detection on spectrograms using data-driven and fixed dictionary representations.;M.Abdel-Sayed,2016

2. Variational autoencoder based anomaly detection using reconstruction probability.;J.An;Special Lecture on IE,2015

3. Anomaly detection in temperature data using DBSCAN algorithm. 2011;M.Çelik;International Symposium on Innovations in Intelligent Systems and Applications,2011

4. On Box-Cox Transformation for Image Normality and Pattern Classification

5. Autoencoder-based network anomaly detection.;Z.Chen;2018 Wireless Telecommunications Symposium (WTS),2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3