Rough Set Based Clustering Using Active Learning Approach

Author:

Kandwal Rekha1,Mahajan Prerna2,Vijay Ritu3

Affiliation:

1. Ministry of Earth Sciences and Science and Technology, India

2. Guru Gobind Singh Indraprastha University, India

3. Bansthali University, India

Abstract

This paper revisits the problem of active learning and decision making when the cost of labeling incurs cost and unlabeled data is available in abundance. In many real world applications large amounts of data are available but the cost of correctly labeling it prohibits its use. In such cases, active learning can be employed. In this paper the authors propose rough set based clustering using active learning approach. The authors extend the basic notion of Hamming distance to propose a dissimilarity measure which helps in finding the approximations of clusters in the given data set. The underlying theoretical background for this decision is rough set theory. The authors have investigated our algorithm on the benchmark data sets from UCI machine learning repository which have shown promising results.

Publisher

IGI Global

Reference20 articles.

1. Unsupervised and supervised data classification via nonsmooth and global optimization.;A. M.Bagirov;Sociedad da Estadistica e Investigacian Operativa Top,2003

2. A rough set-based hierarchical clustering algorithm for categorical data.;D.Chen;International Journal of Information Technology,2006

3. Chengdong, W., Mengxin, L., Zhonghua, H., Zhang, Y., & Yong, Y. (2004). Discretization algorithms of rough sets using clustering. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (pp. 955-960).

4. Feature selection for unsupervised learning.;J. G.Dy;Journal of Machine Learning Research,2004

5. Rough set based clustering of gene expression data: A survey.;J. J.Emilyn;International Journal of Engineering Science & Technology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3