Medical Image Mining Using Fuzzy Connectedness Image Segmentation

Author:

Bhagat Amol P.1,Atique Mohammad1

Affiliation:

1. Sant Gadge Baba Amravati University, India

Abstract

This chapter presents novel approach fuzzy connectedness image segmentation with geometric moments (FCISGM) for digital imaging and communications in medicine (DICOM) image mining. As most of the medical imaging data is exchanged in DICOM format, this chapter focuses on the various methodologies available for DICOM image feature extraction and mining. The comparison of existing medical image mining approaches with the proposed FCISGM approach is provided in this chapter. After carrying out exhaustive results it has been found that proposed FCISGM method gives more precise results and requires minimum number of computations compare to other medical image mining approaches resulting in improved relevant outcomes.

Publisher

IGI Global

Reference40 articles.

1. Annamalai, M., Guo, D., Mavris, S., & Steiner, J. (2009). Oracle database 11g DICOM medical image support. An Oracle White Paper.

2. Medical image retrieval, indexing and enhancement techniques

3. Bhagat A. P., & Atique M. (2011). Design and implementation of image segmentation algorithm. International Journal on Recent Trends in Engineering & Technology, 4(2), 390-394.

4. Medical image retrieval, indexing and enhancement techniques

5. Fuzzy connectedness image segmentation and content based image retrieval.;A. P.Bhagat;International Conference On Signal, Image processing and application,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3