Issues and Challenges in Building Multilingual Information Access Systems

Author:

Varma Vasudeva1,Mogadala Aditya1

Affiliation:

1. IIIT Hyderabad, India

Abstract

In this chapter, the authors start their discussion highlighting the importance of Cross Lingual and Multilingual Information Retrieval and access research areas. They then discuss the distinction between Cross Language Information Retrieval (CLIR), Multilingual Information Retrieval (MLIR), Cross Language Information Access (CLIA), and Multilingual Information Access (MLIA) research areas. In addition, in further sections, issues and challenges in these areas are outlined, and various approaches, including machine learning-based and knowledge-based approaches to address the multilingual information access, are discussed. The authors describe various subsystems of a MLIA system ranging from query processing to output generation by sharing their experience of building a MLIA system and discuss its architecture. Then evaluation aspects of the MLIA and CLIA systems are discussed at the end of this chapter.

Publisher

IGI Global

Reference76 articles.

1. Ananthakrishnan, R. (2003). State of the art in cross-lingual information retrieval. Vivek Journal, 15(2).

2. Asif, E., Rejwanul, H., & Sivaji, B. (2008). Named entity recognition in Bengali: A conditional random field approach. In Proceedings of the 3rd International Joint Conference on Natural Language Processing (IJCNLP-2008), (pp. 589-594). Hyderabad, India: IJCNLP.

3. Attia, M., Toral, A., Tounsi, L., Pecina, P., & Genabith, J. (2010). Automatic extraction of arabic multiword expressions. In Proceedings of the COLING 2010, Workshop on Multiword Expressions: From Theory to Applications (MWE 2010). Beijing, China: COLING.

4. Ballesteros, L., & Croft, W. B. (1996). Dictionary methods for cross-lingual information retrieval. In Proceedings of the 7th International DEXA Conference on Database and Expert Systems, (pp. 791-801). DEXA.

5. Ballesteros, L., & Croft, W. B. (1997). Phrasal translation and query expansion techniques for cross-language information retrieval. In Proceedings of the 20th Annual International ACM Conference on Research and Development in Information Retrieval, (pp. 84-91). Philadelphia, PA: ACM Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3