Affiliation:
1. Université de Bourgogne, France
2. Université de Bourgogne, France, & Qatar University, Qatar
Abstract
This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has one parametric equation, two implicit equations, and a set of circular lines of curvature. The authors use the properties of these surfaces to prove that three families of circles (meridian arcs, parallel arcs, and Villarceau circles) can be computed on every Dupin cyclide. A geometric algorithm to compute these circles so that they define the edges of a 3D triangle on the Dupin cyclide is presented. Examples of conversions and 3D triangles are also presented to illustrate the proposed algorithms.
Reference17 articles.
1. Albrecht, G., Belbis, B., & Garnier, L. (2009). Modélisation d'une surface de Bézier rationnelle biquadratique convertible en un carreau de supercyclide. GTMG, 77-85.
2. Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion
3. Cyclides in surface and solid modeling