A Model-Driven Bayesian Method for Polyp Detection and False Positive Suppression in CT Colonography Computer-Aided Detection

Author:

Ye Xujiong1,Slabaugh Greg1

Affiliation:

1. Medicsight PLC, UK

Abstract

This chapter presents an automated method to identify colonic polyps and suppress false positives for Computer-Aided Detection (CAD) in CT Colonography (CTC). The method formulates the problem of polyp detection as a probability calculation through a unified Bayesian statistical approach. The polyp likelihood is modeled with a combination of shape, intensity, and location features, while also taking into account the spatial prior probability encoded by a Markov Random Field. A second principal curvature PDE provides a shape model; and partial volume effect is incorporated in the intensity model. When evaluated on a large multi-center dataset of colonic CT scans, the CAD detection performance as well as the volume overlap ratio demonstrate the potential of the proposed method. The method results in an average 24% reduction of false positives with no impact on sensitivity. The method is also applicable to generation of initial candidates for CTC CAD with high detection sensitivity and relatively lower false positives, compared to other non-Bayesian methods.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computerized Liver Segmentation from CT Images using Probabilistic Level Set Approach;Arabian Journal for Science and Engineering;2015-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3