Characterization and Coarsening of Autonomous System Networks

Author:

Garcia-Robledo Alberto1,Diaz-Perez Arturo1,Morales-Luna Guillermo2

Affiliation:

1. Cinvestav-Tamaulipas, Mexico

2. Cinvestav-IPN, Mexico

Abstract

This Chapter studies the correlations among well-known complex network metrics and presents techniques to coarse the topology of the Internet at the Autonomous System (AS) level. We present an experimental study on the linear relationships between a rich set of complex network metrics, to methodologically select a subset of non-redundant and potentially independent metrics that explain different aspects of the topology of the Internet. Then, the selected metrics are used to evaluate graph coarsening algorithms to reduce the topology of AS networks. The presented coarsening algorithms exploit the k-core decomposition of graphs to preserve relevant complex network properties.

Publisher

IGI Global

Reference46 articles.

1. Multilevel Algorithms for partitioning power-law graphs.;A.Abou-Rjeili;Proceedings of the 20th International Conference on Parallel and Distributed Processing,2006

2. Statistical mechanics of complex networks

3. Large scale networks fingerprinting and visualization using the k-core decomposition;J. I.Alvarez-Hamelin;Proceedings of Advances in Neural Information Processing Systems 18,2005

4. Scale-free characteristics of random networks: the topology of the world-wide web

5. Fast algorithms for determining (generalized) core groups in social networks

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topology-Aware Load-Balance Schemes for Heterogeneous Graph Processing;Advances in Computer and Electrical Engineering;2018

2. Partitioning of Complex Networks for Heterogeneous Computing;Advances in Computer and Electrical Engineering;2018

3. Core Kernels for Complex Network Analysis;Advances in Computer and Electrical Engineering;2018

4. The Need for HPC Computing in Network Science;Advances in Computer and Electrical Engineering;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3