Data Mining Applications in the Electrical Industry

Author:

Vacio Rubén Jaramillo1,Ortiz Zezzatti Carlos Alberto Ochoa2,Rios Armando3

Affiliation:

1. CFE – LAPEM & CIATEC – CONACYT, Mexico

2. Juarez City University, México

3. Institute Technologic of Celaya, Mexico

Abstract

This chapter describes the experimental study partial discharges (PD) activities with artificial intelligent tools. The results present different patterns using a hybrid system with Self Organizing Maps (SOM) and Hierarchical clustering, this combination constitutes an excellent tool for exploration analysis of massive data such a partial discharge on underground power cables and electrical equipment. The SOM has been used for nonlinear feature extraction and the hierarchical clustering to visualization. The hybrid system is trained with different dataset using univariate phase-resolved distributions. The results show that the clustering method is fast, robust, and visually efficient.

Publisher

IGI Global

Reference22 articles.

1. Ab Aziz, F., Hao, L., & Lewin, P. L. (2007). Analysis of partial discharge measurement data using a support vector machine. In Proceedings of the 5th Student Conference on Research and Development (pp. 1-6).

2. Allan, D., Birtwhistle, D., Blackburn, T., Groot, E., Gulski, E., & McGrail, A. J. (2002). Data mining techniques to assess the condition of high voltage electrical plant. In Proceedings of the CIGRE General Session, Paris, France.

3. Application of self organizing map approach to partial discharge pattern recognition of cast-resin current transformers.;W.Chang;WSEAS Transactions on Computer Research,2008

4. Statistical approach in power cables diagnostic data analysis

5. Edin, H. (2001). Partial discharge studies with variable frequency of the applied voltage (Unpublished doctoral dissertation). KTH Electrical Engineering, Stockholm, Sweden.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3