The Role of Hypermutation and Affinity Maturation in AIS Approaches to Clustering

Author:

Ahmad Waseem1,Narayanan Ajit2

Affiliation:

1. International College of Auckland, New Zealand

2. Auckland University of Technology (AUT), New Zealand

Abstract

In recent years, several artificial immune system (AIS) approaches have been proposed for unsupervised learning. Generally, in these approaches antibodies (or B-cells) are considered as clusters and antigens are data samples or instances. Moreover, antigens are trapped through free-floating antibodies or immunoglobulins. In all these approaches, hypermutation plays an important role. Hypermutation is responsible for producing mutated copies of stimulated antibodies/B-cells to capture similar antigens with higher affinity (similarity) measure and responsible to create diverse pool of solutions. Humoral-Mediated Artificial Immune System (HAIS) is an example of such algorithms. However, there is currently little understanding about the effectiveness of hypermutation operator in AIS approaches. In this chapter, we investigate the role of the hypermutation operator as well as affinity threshold (AT) parameters in order to achieve efficient clustering solutions. We propose a three-step methodology to examine the importance of hypermutation and the AT parameters in AIS approaches to clustering using basic concepts of HAIS algorithm. Here, the role of hypermutation in under-fitting and over-fitting the data will be discussed in the context of measure of entropy.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3