Affiliation:
1. SLG, University of Rajshahi, Bangladesh
2. CQUniversity, Australia
3. Ball State University, USA
4. University of Rajshahi, Bangladesh
Abstract
The use of logistic regression, its modelling and decision making from the estimated model and subsequent analysis has been drawn a great deal of attention since its inception. The current use of logistic regression methods includes epidemiology, biomedical research, criminology, ecology, engineering, pattern recognition, machine learning, wildlife biology, linguistics, business and finance, et cetera. Logistic regression diagnostics have attracted both theoreticians and practitioners in recent years. Detection and handling of outliers is considered as an important task in the data modelling domain, because the presence of outliers often misleads the modelling performances. Traditionally logistic regression models were used to fit data obtained under experimental conditions. But in recent years, it is an important issue to measure the outliers scale before putting the data as a logistic model input. It requires a higher mathematical level than most of the other material that steps backward to its study and application in spite of its inevitability. This chapter presents several diagnostic aspects and methods in logistic regression. Like linear regression, estimates of the logistic regression are sensitive to the unusual observations: outliers, high leverage, and influential observations. Numerical examples and analysis are presented to demonstrate the most recent outlier diagnostic methods using data sets from medical domain.
Reference38 articles.
1. Finding the outliers that matter. Journal of the Royal Statistical Society;D. F.Andrews;Series-B,1978
2. Distance-based detection and prediction of outliers
3. Masking unmasked
4. Regression Diagnostics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献