Optimization of Drilling Process via Weightless Swarm Algorithm

Author:

Ting T. O.1

Affiliation:

1. Xi'an Jiaotong-Liverpool University, China

Abstract

In this chapter, the main objective of maximizing the Material Reduction Rate (MRR) in the drilling process is carried out. The model describing the drilling process is adopted from the authors' previous work. With the model in hand, a novel algorithm known as Weightless Swarm Algorithm is employed to solve the maximization of MRR due to some constraints. Results show that WSA can find solutions effectively. Constraints are handled effectively, and no violations occur; results obtained are feasible and valid. Results are then compared to previous results by Particle Swarm Optimization (PSO) algorithm. From this comparison, it is quite impossible to conclude which algorithm has a better performance. However, in general, WSA is more stable compared to PSO, from lower standard deviations in most of the cases tested. In addition, the simplicity of WSA offers abundant advantages as the presence of a sole parameter enables easy parameter tuning and thereby enables this algorithm to perform to its fullest.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3