Evaluating an Evolutionary Particle Swarm Optimization for Fast Fuzzy C-Means Clustering on Liver CT Images

Author:

Ali Abder-Rahman1,Couceiro Micael S.2,Anter Ahmed M.3,Hassanian Aboul Ella4

Affiliation:

1. Scientific Research Group in Egypt (SRGE), Egypt

2. University of Coimbra, Portugal & Ingeniarius, Lda., Mealhada, Portugal

3. Scientific Research Group in Egypt (SRGE), Egypt & Mansoura University, Egypt

4. Scientific Research Group in Egypt (SRGE), Egypt & Cairo University, Egypt

Abstract

An Evolutionary Particle Swarm Optimization based on the Fractional Order Darwinian method for optimizing a Fast Fuzzy C-Means algorithm is proposed. This chapter aims at enhancing the performance of Fast Fuzzy C-Means, both in terms of the overall solution and speed. To that end, the concept of fractional calculus is used to control the convergence rate of particles, wherein each one of them represents a set of cluster centers. The proposed solution, denoted as FODPSO-FFCM, is applied on liver CT images, and compared with Fast Fuzzy C-Means and PSOFFCM, using Jaccard Index and Dice Coefficient. The computational efficiency is achieved by using the histogram of the image intensities during the clustering process instead of the raw image data. The experimental results based on the Analysis of Variance (ANOVA) technique and multiple pair-wise comparison show that the proposed algorithm is fast, accurate, and less time consuming.

Publisher

IGI Global

Reference42 articles.

1. Guidelines for the Use of Contrast Agents in Ultrasound - January 2004

2. ANOVA. (2013, December 13). Retrieved from: http://www.mathworks.com/help/stats/anova.html

3. Anter, A., Azar, A., Hassanien, A., El-Bendary, N., & ElSoud, M. (2013). Automatic Computer Aided Segmentation for Liver and Hepatic Lesions Using Hybrid Segmentations Techniques. In Proceedings of Federated Conference on Computer Science and Information Systems, (pp. 193-198). IEEE.

4. Ashman, J. (2010). Measuring Named Entity Similarity Through Wikipedia Category Hierarchies. (MSc thesis). The University of Texas at Arlington, Arlington, TX.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3